
Chapter 7
Energy harvesting with kites

Roland Schmehl

Abstract In this lecture, the maneuvers introduced in the previous lecture are com-
bined to describe the operation of practically relevant AWE systems. The focus is on
pumping cycle operation. Operational strategies are discussed, including now also
winch control.

7.1 Pumping cycle power

To accurately predict the achievable power output of the AWE system, the wind re-
source assessment has to be combined with an energy conversion model. As prepara-
tory steps, the working principle and concept of operations of the considered pump-
ing kite power system are outlined in Sect. 7.1.1, followed by a discussion of kite
kinematics and key assumptions in Sect. 7.1.2. In Sect. 7.1.3, an analytical model
is developed accounting for the reel-out and reel-in phases of the pumping cycle
and the different aerodynamic loads, reeling speeds, and time durations. Follow-
ing Terink (2009), each phase is described by a representative quasi-steady flight
state. In Sect. 7.1.4, the conversion model is used for systematic optimization of
the operational parameters, distinguishing three wind speed regimes with different
operational strategies. The control concept was introduced by Luchsinger (2013)
and Fechner and Schmehl (2013) to account for constraints of a real implemented
system. In Sect. 7.1.5, additional conversion losses are incorporated in the model,
as proposed by Fechner and Schmehl (2013), to determine in Sect. 7.1.6 the net
electrical power output of the system per production cycle, day and year.
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7.1.1 Working principle and concept of operations

The general working principle of an AWE system operated in pumping cycles is
illustrated in Fig. 7.1. The diagram depicts a representative cycle trajectory in the
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Fig. 7.1: Flight path of a soft-kite based pumping AWE system computed in the
wind reference frame with a dynamic system model (adapted from Fechner 2016).
Kite and drum not to scale.

wind reference frame, spanned by the xw-, yw- and zw-axes. The origin of this ref-
erence frame is located at the point where the tether exits from the ground station’s
drum, the xw-axis is pointing in the direction of the wind, and the zw-axis vertically
upwards (Schmehl et al. 2013).

During the reel-out phase, the kite is operated in crosswind maneuvers, in the
illustrated case, consecutive figure-of-eight patterns, maximizing the pulling force
and thus also the generated energy. In the literature, this phase is also denoted as the
traction or production phase. When reaching the maximum deployed tether length,
the crosswind maneuvers are terminated, and the kite is depowered and steered into
the xwzw-plane. To depower the kite, its rear bridle lines are released such that the
wing pitches forward to a lower angle of attack with the relative flow. This substan-
tially decreases the aerodynamic forces. In this outer transition phase, the tether is
kept at a constant length while the kite flies towards the zw-axis continuously in-
creasing its elevation angle. Before reaching the xwzw-plane and a static flight state,
the ground station generally starts to reel in the tether.



7 Energy harvesting with kites 3

During the reel-in phase, energy is consumed because the drum works against the
pulling force of the kite, which is much lower than in the reel-out phase but still re-
quired to keep the airborne system under tension. In the literature, this phase is also
denoted as the retraction or consumption phase. For the same reasons of structural
stability, a soft-kite-based system can only be depowered to a certain degree. Con-
sequently, the aerodynamic lift-to-drag ratio is still relatively high, which leads to a
continuous increase in the elevation angle when reeling in. This process is also used
for winch launching a kite from the ground or step towing to keep the kite airborne
despite a too-low wind speed. When reaching the minimum deployed tether length,
the kite is powered again by pulling in the rear bridle lines. In this inner transition
phase, the tether is kept at a constant length while the kite flies towards the xw-axis,
continuously decreasing its elevation angle. Before reaching a static flight state, the
crosswind maneuvers are reinitiated, and the ground station starts to reel out the
tether, starting the next pumping cycle.

The net generated energy per cycle is the difference between the energy gener-
ated in the reel-out phase and the energy consumed in the reel-in phase. This latter
amount of energy has to be stored suitably during the reel-out phase. Most currently
implemented smaller-scale systems use rechargeable batteries or supercapacitors,
while other options, such as hydraulic drivetrains with pneumatic storage, might
be of interest for larger-scale implementations (Hagen et al. 2023). In practice, the
transition phases are generally kept as short as possible to minimize the associated
losses in net power. For a soft-wing kite system, the depowering and powering of
the wing takes a few seconds and is blended into the reel-in and reel-out phases.

During the reel-in phase and the two transition phases, the flight control system
aims to keep the flight motion of the kite within the xwzw-plane, such that the flight
path is roughly two-dimensional. During the reel-out phase, the kite is steered along
three-dimensional, outgoing figure-of-eight maneuvers. In contrast to a wind tur-
bine, pumping crosswind AWE systems thus harvest from a larger volume of the
atmosphere.

Launching and landing do not contribute to energy harvesting but are indispens-
able operational phases to start up and shut down the pumping cycle operation. For
example, when a thunderstorm approaches or other hazardous conditions are fore-
seeable, the kite must be landed, secured, and stored safely before it can eventually
be launched again. Similarly, when the wind speed drops below the cut-in wind
speed for an extended time period, the kite has to be landed and relaunched once
the wind picks up again. For shorter periods, the kite can be kept airborne using the
energy-consuming technique of step towing.

More details about the concept of operations are provided in Van der Vlugt et al.
(2013), Van der Vlugt et al. (2019) and Salma et al. (2019).
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7.1.2 Kite kinematics and key assumptions

The control system of the AWE system governs two distinctly different motion com-
ponents of the kite. The component along the tether is imposed by the reeling speed
of the ground station. The component in the plane perpendicular to the tether can be
described by a flight direction and speed. The direction is controlled by the steer-
ing mechanism of the kite control unit. On the other hand, the flight speed cannot
be controlled directly because a kite does not have a propulsion system. Instead, it
is influenced by several factors, among others, the aerodynamic characteristics of
the kite, most importantly the lift-to-drag ratio, the reeling speed, and the degree of
alignment of flight direction and gravitational acceleration. The strong aerodynamic
coupling of the two orthogonal motion components and the dominant effect of the
flight speed on the pulling force explains why reliable and robust control of a kite
in a varying and fluctuating wind environment still constitutes a challenge for the
commercial development of AWE systems.

The described control concept and kinematic decomposition are applicable dur-
ing flight phases of constant tether sag. Since the tether shape is determined by the
equilibrium of the distributed load along the tether, such as aerodynamic drag, grav-
ity, centrifugal acceleration, and the tether forces at both ends, sudden changes in
these contributions also affect the tether sag. A changing sag, in turn, leads to a rota-
tion of the kite with respect to the ground station. This can be observed, for example,
when powering or depowering the kite or when starting or stopping crosswind ma-
neuvers.

Figure 7.2 illustrates the different tether geometries during reel out and reel in.
While the tether is practically straight when flying crosswind maneuvers during reel-

Fig. 7.2: Kite performing crosswind flight maneuvers with practically straight tether
while reeling out (left) and non-maneuvering kite with strongly sagging tether while
reeling in (right). Photographic footage with traced tether from 2 August 2012.
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out, this particular flight test shows a rather extreme tether sag during reel-in, mainly
because of low wind and reel-in speeds leading to a relatively low tether force. It
should be noted that the photos do not depict the regular pumping cycle operation of
the kite but the launching and landing phases with a relatively short deployed tether
length, using an experimental setup with a tilted mast (Van der Vlugt et al. 2019;
Salma et al. 2019).

A simplified mathematical model of tethered flight and tractive power generation
can be derived by assuming a straight and inelastic tether. Using spherical coordi-
nates (r,φ ,β ), the position of the kite in the wind reference frame can be described
by the radial distance r of the kite from the ground station, which is identical to the
deployed tether length lt, the azimuth angle φ measured from the xwzw-plane, and
the elevation angle β measured from the ground plane. The flight velocity vk of the
kite can be described by radial and tangential components vk,r and vk,τ , respectively.
The radial speed vk,r is identical to the reeling speed vt of the tether. It is positive
for reel-out and negative for reel-in. The tangential velocity component is defined
by the speed vk,τ and the course angle χ , measured in the local tangential plane τ

from a defined reference direction. By definition, the tangential speed vk,τ can not
be negative (Schmehl et al. 2013).

Figure 7.3 illustrates the definition of the kite’s position and velocity in spherical
coordinates. The magnitudes of the radial and tangential components of the flight
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Fig. 7.3: Kite with an idealized straight tether of variable length r at elevation angle
β for the special case of the kite just passing through the xwzw-plane (φ = 0).

velocity can be nondimensionalized with the wind speed,

vk

vw
=
√

f 2 +λ 2, (7.1)

f =
vk,r

vw
=

vt

vw
, (7.2)
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λ =
vk,τ

vw
, (7.3)

introducing the reeling factor f and the tangential velocity factor λ .
Figure 7.4 shows a side view of the three-dimensional flight path depicted in

Fig. 7.1. The pumping cycle evolves through six characteristic points in times,
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Fig. 7.4: Side view of real (solid blue) and idealized (dashed) flight paths.

t0 − t1 − t2 − t3 − t4 − t5. Following a convention introduced by Van der Vlugt et
al. (2019), the start time t0 of the cycle is set to the end of the reel-out phase. In this
schematic, the angle βo describes the average elevation angle during reel out with
the nondimensional speed fo, while the angle βi describes the constant elevation an-
gle during steady-state reel in with the constant nondimensional speed fi. It should
be noted that this asymptotic limit state is not necessarily reached, as it is depicted in
Fig. 7.4. Depending on the aerodynamic properties of the depowered kite, its mass,
the reel-in speed, and the covered radial distance rmax − rmin, the reel-in phase may
end at t3 before reaching the steady-state flight condition with constant elevation
angle βi. The parameter zm,o describes the mid-altitude of the reel-out phase, which
will be used to evaluate the wind resource accessible for conversion.

Table 7.1 describes how the position and the nondimensional velocity variables
vary along the phases of the pumping cycle. The first part of the reel-in phase is
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Table 7.1: Phases of pumping cycle operation of a soft-wing kite.

Start time Name Kite position Kite velocity
r φ β f λ χa

t0 Outer transition rmax → 0 ↗ 0 > 0 → 0
t1 Reel in ↘ ≈ 0 ↗ fi < 0 > 0 ≈ 0
t2 Steady-state reel in ↘ ≈ 0 βi fi < 0 0 ≈ 0
t3 Inner transition rmin ≈ 0 ↘ 0 > 0 → π

t4 Reel out ↗ ±∆φ βo ±∆β fo > 0 ≫ 0 ±π

t5 Outer transition . . .
a Course angle relative to the local upwards direction eβ , as in Fechner and Schmehl (2018).

described by λ > 0 and increasing elevation angle β , while the second part of the
steady-state reel-in is described by λ = 0 and constant elevation angle βi.

To assess the generated and consumed energies over a pumping cycle, we need
to identify one or more representative flight states for each phase and, from these,
estimate the respective pulling force of the kite. The most basic approach uses one
flight state for the reel-out phase and a separate one for the reel-in phase (Terink
2009; Luchsinger 2013). A suitable choice for the reel-out phase is a crosswind
flight condition at the average elevation angle βo, while for the reel-in phase, it is
the steady flight state at the asymptotic limit angle βi. The corresponding idealized
flight path is included as a dashed line t0 − t∗1 − t3 − t∗4 − t5 in Fig. 7.4. The approx-
imation entails that the transition phases are infinitely fast, i.e., t∗1 = t0 and t∗4 = t3,
such that the pumping cycle operation practically switches between reel-out and
reel-in flight states. Because the transition phases are periods of zero power genera-
tion, they represent losses of net power. To maximize the cycle power, the transition
phases will be shortened to a minimum feasible duration, which means that the ap-
proximation should be quite reasonable for any optimized commercial AWE system.
In the next section, the two representative flight states will be used to estimate the
net power over a pumping cycle.

Formulating the mathematical model in terms of nondimensional parameters f
and λ defined by Eqs. (7.2) and (7.3) is important for investigating how airborne
wind energy generation scales. However, in a realistic wind field, the wind speed
varies in space and time. The question arises of which wind speed value is most
suitable to characterize the energy conversion process. Given that the kite harvests
wind energy over a large altitude range, the variation of the wind speed with altitude
is important to consider. Because the power output of the reel-out phase is ruling for
the net energy produced, the mid-altitude of this phase will be used, as suggested by
Van der Vlugt et al. (2019) and indicated in Fig. 7.4

zm,o =
1
2
(rmin + rmax)sinβo. (7.4)
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The tractive power of the kite is the product of the tether force and the reeling
speed at the ground station. The dominant contribution to the tether force is the
resultant aerodynamic force of the kite, commonly represented as a combination of
lift and drag components

Fa = L+D, with (7.5)

L =
1
2

ρv2
aCLS, (7.6)

D =
1
2

ρv2
a

(
CD,kS+

1
4

CD,tdtr
)
, (7.7)

where ρ is the atmospheric density, CL and CD,k are the lift and drag coefficients,
and S the planform area of the kite, respectively, CD,t is the drag coefficient of a
cylinder in a cross flow, and dt is the tether diameter (Van der Vlugt et al. 2019).
Equation (7.7) can be reformulated in terms of a lumped drag coefficient CD

D =
1
2

ρv2
aCDS, with (7.8)

CD =CD,k +
1
4

CD,t
dtr
S
. (7.9)

Similarly to the argument presented for Eq. (7.4), we use in this approximation the
mean tether length during the reel-out phase

rm,o =
1
2
(rmin + rmax) . (7.10)

By definition, the drag component D is aligned with the apparent wind velocity
va while the lift component L is perpendicular to it. The apparent wind velocity is
defined as the relative flow velocity at the kite

va = vw −vk. (7.11)

Inserting Eqs. (7.6) and (7.8) into Eq. (7.5) and making use of the orthogonality of
the two force components, the magnitude of the aerodynamic force can be evaluated
as

Fa =
1
2

ρCL

√
1+

1
E2 Sv2

a , (7.12)

where E denotes the lift to drag ratio L/D of the kite.
Because of the low mass and large wing surface area of membrane kites, inertial

forces play only a minor role, and the kite’s motion can be assumed to be quasi-
steady. Furthermore, in the power production phase, the aerodynamic force is sub-
stantially larger than the gravitational force acting on the kite, and as a consequence,
the tether force can be approximated by the tether force

0 = Ft +Fa. (7.13)
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Accordingly, the nondimensional tether force and tractive power can be derived
as

Ft

qS
=CL

√
1+

1
E2

(
va

vw

)2

, (7.14)

ζ =
P

PwS
=CL

√
1+

1
E2 f

(
va

vw

)2

, (7.15)

where q denotes the dynamic wind pressure and Pw the wind power density,

q =
1
2

ρv2
w, (7.16)

Pw =
1
2

ρv3
w. (7.17)

The nondimensional power ζ defined by Eq. (7.15) is also denoted as power har-
vesting factor (Diehl 2013; Schmehl et al. 2013; Vander Lind 2013).

7.1.3 Kite mechanical power generation

The net mechanical energy of a pumping cycle is the difference between the gen-
erated and consumed energies during the reel-out and reel-in phases, respectively.
Applying the idealizations outlined in the previous section, these energies can be
estimated with Eq. (7.15), using the wind power density Pw at the location, the plan-
form area S and aerodynamic properties CL and E of the kite, the reeling factor f
and the nondimensional apparent wind speed va/vw in each cycle phase.

Apparent wind speed, tether force and mechanical power

A general expression for va/vw can be derived by decomposing the velocity vector
into radial and tangential components,

va = va,r +va,τ , (7.18)

and then, using the orthogonality of the components to formulate the velocity mag-
nitude, as

va

vw
=

va,r

vw

√
1+

(
va,τ

va,r

)2

. (7.19)

The radial velocity component in this expression can be derived from the radial
component of Eq. (7.11),
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Fig. 7.5: Quasi-steady force equilibrium governing the flight motion of a massless
kite, with apparent wind velocity components va,τ and va,r, and aerodynamic force
components L and D, in the plane spanned by the apparent wind velocity va and the
resultant aerodynamic force Fa.

va,r = vw,r − vk,r, (7.20)

substituting vw,r = cosβvw, as illustrated in Fig. 7.3, and vk,r = f vw, according to
Eq. (7.2), to get

va,r

vw
= cosβ − f . (7.21)

This expression implies φ = 0. For an arbitrary azimuth angle, an additional orthog-
onal projection into the xwzw-plane needs to be applied, multiplying cosβ by cosφ

(Schmehl et al. 2013).
Assuming that the flight motion of the kite is governed by the quasi-steady equi-

librium of the resultant aerodynamic force and the tether force only, it can be shown
that the ratio va,τ/va,r is identical to the lift-to-drag ratio of the kite (Schmehl et al.
2013)

va,τ

va,r
=

L
D

= E. (7.22)

This fundamental identity derives from the geometric similarity of the velocity and
force triangles illustrated in Fig. 7.5. Because the vectors va and L are perpendicular
by definition, and the vectors va,τ and Fa are perpendicular by assumption of Fa +
Ft = 0, and because the colored velocity and force triangles are right triangles, the
two triangles are also geometrically similar.

Inserting Eqs. (7.21) and (7.22) into Eq. (7.19), leads to the following algebraic
expression for the nondimensional apparent wind speed experienced by a kite flying
in the xwzw-plane

va

vw
=
√

1+E2 (cosβ − f ) , (7.23)

describing the dependency on the operational parameters β and f and the design pa-
rameter E. The speed is unaffected by the flight direction, decreases with increasing
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elevation angle and reeling factor, and increases with E. Inserting Eq. (7.23) into
Eqs. (7.14) and (7.15) leads to

Ft

qS
=CL

√
1+

1
E2

(
1+E2)(cosβ − f )2 , (7.24)

P
PwS

=CL

√
1+

1
E2

(
1+E2) f (cosβ − f )2 , (7.25)

During the reel-out phase, the kite is generally flown with a high lift-to-drag
ratio to maximize the tether force and the generated power. In this case, for E ≫ 1,
Eqs. (7.23) to (7.25) further simplify to

va

vw
= E (cosβ − f ) , (7.26)

Ft

qS
=CLE2 (cosβ − f )2 , (7.27)

P
PwS

=CLE2 f (cosβ − f )2 . (7.28)

Equations (7.23) to (7.28) describe the relative flow velocity, tether force and tractive
power of a massless kite in the xwzw-plane over the whole pumping cycle.

The ground station controls the reeling factor f . During crosswind flight, the
tangential velocity factor λ adjusts to the instantaneous position and flight direction
along the trajectory, depending on the kite’s aerodynamic characteristics (Schmehl
et al. 2013). During steady-state reel-in, the tangential motion component of the
kite is zero. The aerodynamic characteristics of the kite are now a function of the
reeling speed and the desired descent angle. This specific flight condition will be
investigated in the following.

Reel-in phase

The situation during steady-state reel-in is depicted in Fig. 7.6. To descend with
a constant elevation angle β , the kite velocity vk has to align with the tether. For
this specific flight mode, Eq. (7.11) can be developed into an alternative algebraic
expression for the nondimensional apparent wind speed

v2
a = (vw + cosβvk)

2 +(sinβvk)
2 , (7.29)

= v2
w +2vwvk cosβ + v2

k, (7.30)
va

vw
=
√

1−2 f cosβ + f 2. (7.31)

Equation (7.29) is constructed as a geometric relation assuming positive wind and
kite speeds. The minus sign in Eq. (7.31) accounts for the negative value of f during
reel-in. The above derivation is based solely on the kinematic requirement of align-



12 Roland Schmehl

zw

xw

vk

D

L

va va

Fa

vw vw

vw

sinβvk

cosβvk

β

−vk −vk

Dec
en

t p
ath

O

c

K

b

b

c

Ft

Fig. 7.6: Steady-state reel in of a massless kite at constant elevation angle β .

ing the kite velocity vector with the tether. Forces are not considered in this deriva-
tion. As seen from Fig. 7.6, the requirement of aligning the resultant aerodynamic
force vector with the tether to satisfy the quasi-steady force equilibrium introduces
a coupling of the lift and drag components. Consequently, a desired combination
of descent path angle β and reeling factor f will require a specific lift-to-drag ratio
E value. This relationship can be derived formally following Loyd’s theory for the
simple (non-crosswind) kite, adapted for the case of reeling in the tether.

As illustrated in Fig. 7.6, the kite velocity vk can be decomposed into components
c and b aligned with and perpendicular to the apparent wind velocity. Using these
to substitute va in Eq. (7.11) gives

va = vw −b− c, (7.32)

v2
w = (va − c)2 +b2, (7.33)

where we again assume that c and b are positive speeds. Equation (7.33) is visualized
in Fig. 7.6 by the colored triangle included in the right-hand side detail. Considering
then the geometric similarity of the colored velocity and force triangles on the left-
hand side of Fig. 7.6, we can derive the following relations

b
vk

=
L
Fa

=
1√

1+ 1
E2

, (7.34)
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c
vk

=
D
Fa

=
1√

1+E2
, (7.35)

which are further normalized to the wind speed to

b
vw

=− f√
1+ 1

E2

, (7.36)

c
vw

=− f√
1+E2

. (7.37)

As in Eq. (7.31), the minus signs in Eqs. (7.36) and (7.37) account for the negative
value of f when reeling in, to render positive values for the two speed ratios. Com-
bining Eqs. (7.33), (7.36) and (7.37) and solving for the nondimensional apparent
wind speed leads to the following expression

va

vw
=

√
1− f 2

1+ 1
E2

− f√
1+E2

, (7.38)

=

√
1+E2 (1− f 2)− f√

1+E2
. (7.39)

While Eq. (7.31) describes the influence of the elevation angle and reeling speed
on the apparent wind speed, Eq. (7.39) describes the influence of the lift-to-drag
ratio and reeling speed. Although derived here for the reel-in phase with f < 0, both
equations are equally valid for the reel-out phase with f > 0. Combining the two
equations and solving for the lift-to-drag ratio gives

E =

√
1− cos2 β

cosβ − f
=

sinβ

cosβ − f
. (7.40)

To maintain the steady-state descent of a massless kite with a given reel in speed
and elevation angle, a lift-to-drag ratio according to Eq. (7.40) has to be enforced.
For f = 0, Eq. (7.40) reduces to the known result E = tanβ .

Combining Eqs. (7.23) and (7.39), we can further derive an expression for the
elevation angle of a kite flying along a radial flight path, i.e., with λ = 0, towards or
away from the ground attachment point,

cosβ =

√
1+E2(1− f 2)+ f E2

1+E2 . (7.41)

This equation can be used to determine the maximum elevation angle βmax that a
kite with a lift-to-drag ratio E can assume during steady-state flight operation with
a reeling factor f .

Equation (7.39) gives rise to an important operational constraint for the steady-
state retraction of a massless kite. Requiring that the radicand in the numerator is
larger or equal to zero leads to the following condition for the reeling factor
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f ≥−
√

1+
1

E2 . (7.42)

This limit shows that a very low lift-to-drag ratio is needed for fast reel-in. For
E ≫ 1 the minimum reeling factor is −1, while for E = 1 it only decreases to −

√
2.

Since the tether force is relatively low during the reel-in phase, it can be assumed
that the gravitational forces neglected in the above theory have a significant effect
and decrease the limit further to below the theoretical value given by Eq. (7.42).

While the aerodynamic characteristics of fixed-wing kites can modulated rapidly
to low and even negative values of the lift-to-drag ratio (close to zero and negative
angle of attack), this is not possible with soft-wing kites. The actuation of this type
of kite is slower and, for reasons of structural stability, restricted to a positive lift-to-
drag ratio (positive angle of attack). Because of this, we implement the reel-in phase
with a constant, prescribed lift-to-drag ratio E and a dependent elevation angle β .
In this case, the nondimensional tether force and tractive power during the reel-in
phase can be derived by inserting Eq. (7.39) into Eqs. (7.14) and (7.15)

Ft

qS
=CL

√
1+

1
E2

(√
1+E2 (1− f 2)− f

)2

1+E2 , (7.43)

P
PwS

=CL

√
1+

1
E2 f

(√
1+E2 (1− f 2)− f

)2

1+E2 . (7.44)

Compared to Eqs. (7.24) and (7.25), the above expressions miss the factor 1+E2,
which, especially for E ≫ 1 is reflecting the substantial amplification of the tether
force and tractive power in the reel-out phase flying crosswind maneuvers.

Mechanical cycle power

Expressing the tether force during the reel-out phase by Eq. (7.24), and during the
reel-in phase by Eq. (7.43), the net mechanical energy per cycle can be calculated
with the known tether length change as

Ec = Eo +Ei = [Ft,o −Ft,i] (rmax − rmin) , (7.45)

= qS

γo (cosβo − fo)
2 − γi

(√
1+E2

i

(
1− f 2

i

)
− fi

)2

1+E2
i

(rmax − rmin) , (7.46)

where the nondimensional aerodynamic force factors for the reel-out and reel-in
phases are defined as

γo =CL,o

√
1+

1
E2

o

(
1+E2

o
)
, (7.47)
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γi =CL,i

√
1+

1
E2

i
. (7.48)

The average mechanical power is determined by dividing the net energy per cycle
by the time duration of a cycle. Neglecting the transition phases, the cycle time is
determined as the sum of the reel-in time ti = t3 − t0 and reel-out time to = t5 − t3

tc = ti + to =
rmin − rmax

fivw
+

rmax − rmin

fovw
, (7.49)

=
rmax − rmin

vw

fi − fo

fi fo
, (7.50)

where t0, t3 and t5 are defined as illustrated in Fig. 7.4. Defining a normalized aver-
age mechanical power or, in short, normalized cycle power, and substituting Ec by
Eq. (7.46) and tc by Eq. (7.50), leads to

pc =
Ec

tcPwSγo
=

(cosβo − fo)
2 − γi

γo

(√
1+E2

i

(
1− f 2

i

)
− fi

)2

1+E2
i

 fi fo

fi − fo
, (7.51)

with the aerodynamic force factors γo and γi defined in Eqs. (7.47) and (7.48), re-
spectively. Since the generated energy generally is the dominating contribution to
the cycle power, the force factor of the reel-out phase is used for the normalization,
such that the ratio γi/γo quantifies the relative effect of the consumed energy. From
Eq. (7.51), the average cycle power can be evaluated as

Pc =
Ec

tc
= pcγoPwS. (7.52)

7.1.4 Performance optimization under operational constraints

Considering only the reel-out phase, the extreme value of the third-order polynomial
in f on the right-hand side of Eq. (7.25) leads to the optimal reeling factor and
corresponding optimal tractive power expressions (Luchsinger 2013)

fopt =
1
3

cosβo, (7.53)

ζopt =
4

27
cos3

βoγo. (7.54)

Popt =
4

27
cos3

βoγoPwS. (7.55)

The expressions reflect the well-known dependencies of kite-based energy harvest-
ing on key environmental, operational, and design parameters. The optimal reel-out
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speed is one-third of the wind speed when the tether is parallel to the ground, from
where it progressively decreases with increasing elevation angle. As typical for wind
energy converters, the tractive power Popt increases with the cube of the wind speed
stemming from the wind power density Pw given by Eq. (7.17). It decreases with the
cubed cosine of the elevation angle, stressing the importance of maintaining an as
low as possible elevation angle during reel out. To maximize the aerodynamic force
factor γo, we note that for crosswind operation, the contribution of the tether to the
total system drag sets a hard lower limit for the minimum system drag. For this rea-
son, aerodynamic optimization is primarily about maximizing the lift coefficient of
the kite.

Nevertheless, the theoretical performance projected by Eq. (7.55) is practically
not achievable. On the one hand, the reel-in phase and other inherent conversion
losses can not be neglected. On the other hand, any real system is subject to hard-
ware limits that need to be considered when optimizing the system’s operation. Im-
portant performance envelope borders originate from the maximum tensile force the
tether can withstand and the maximum electrical power the generator can produce.
The derivations so far have not considered these hardware limitations.

In the following, the maximum normalized cycle power is determined for three
operational regimes. In the first regime, the wind speeds are sufficiently low that
hardware limitations do not need to be considered. Accordingly, the cycle power is
determined by optimizing the reeling speeds in both phases of the idealized cycle.
In the second regime, the wind speeds have increased to a level where the maximum
allowed tether force is reached in the reel-out phase. To keep the tether force at this
limit, the reel-out speed is now increased with the wind speed, and only the reeling
speed can be optimized to maximize the cycle power. In the third regime, the wind
speeds have increased further to a level where also the maximum allowed generator
power is reached. To comply with the joint force and power limits, the reel-out speed
can not be increased any further. Instead, the aerodynamic properties of the kite or
other operational parameters, such as the average elevation angle during reel-out,
must be adjusted. As in the second regime, only the reel-in speed can be optimized
to maximize the cycle power. The section is concluded by combining the three wind
speed regimes within a single operation strategy.

Wind speed regime 1: unconstrained operation

At sufficiently low wind speeds, neither the maximum tether tension nor the maxi-
mum generator power are reached. With given set values βo and Ei for the elevation
angle during reel-out and the lift-to-drag ratio during reel-in, the normalized cycle
power given by Eq. (7.51) can be maximized by optimizing the reeling factors, fo
and fi,
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pc,opt = max
fo, fi


(cosβo − fo)

2

− γi

γo

(√
1+E2

i

(
1− f 2

i

)
− fi

)2

1+E2
i

 fi fo

fi − fo

 .

(7.56)

For unconstrained operation, the aerodynamic force factors γi and γo are assumed to
be constant.

Wind speed regime 2: constrained tether force

The first hardware limit that is generally encountered during the reel-out phase is
the maximum allowed tether force, also denoted as rated or nominal tether force.
Using Eqs. (7.16), (7.24) and (7.47), the tether force during the reel-out phase can
be formulated as

Ft,o =
1
2

ρv2
wSγo (cosβo − fo)

2 , (7.57)

which, when reaching the nominal force, evaluates to

Ft,n =
1
2

ρv2
n,FSγo (cosβo − fn,F)

2 , (7.58)

where vn,F and fn,F are the wind speed and reeling factor at which this specific con-
dition occurs. The nominal values Ft,n, vn,F and fn,F are constant properties of a
specific AWE system. An effective strategy to limit the tether force to the nomi-
nal value also for larger wind speeds is a controlled increase of the reeling speed.
The reeling factor required to impose the constraint Ft,o = Ft,n for vw > vn,F can be
derived by combining Eqs. (7.24) and (7.58) to

1
2

ρv2
wSγo (cosβo − fo)

2 =
1
2

ρv2
n,FSγo (cosβo − fn,F)

2 , (7.59)

which, assuming a constant aerodynamic force factor γo and elevation angle βo,
leads to

fo =
cosβo (µF −1)+ fn,F

µF
. (7.60)

In the above expression, we introduced the nondimensional velocity parameter

µF =
vw

vn,F
> 1, (7.61)

which quantifies how much the wind speed exceeds the nominal value. Equa-
tion (7.60) describes how, starting from fn,F at vn,F, the reeling factor fo increases
with increasing wind speed vw in regime 2. Since the tether force during the reel-in
phase is much lower than during the reel-out phase, the reeling factor fi can be var-
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ied freely to maximize the cycle power. The mechanical power during the reel-out
phase is given by

Po = Ft,nvw fn,F. (7.62)

Using Eq. (7.60) to substitute the reeling factor fo in Eq. (7.50) leads to the
following expression for the cycle time

tc =
rmax − rmin

vw

µF fi − [(µF −1)cosβo + fn,F]

fi [(µF −1)cosβo + fn,F]
. (7.63)

The net mechanical energy per cycle can be defined similarly to Eqs. (7.45) and (7.46),
but now replacing the reel-out tether force Ft,o first by the nominal tether force Ft,n,
which is then resolved by a combination of Eqs. (7.58) and (7.61),

Ec = [Ft,n −Ft,i] (rmax − rmin) ,

= qSγo

 1
µ2

F
(cosβo − fn,F)

2
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γo
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i

(
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i

)
− fi

)2

1+E2
i

(rmax − rmin) .

(7.64)

The factor 1/µ2
F is responsible for a rapid decrease of the generated energy contribu-

tion when the wind speeds exceed the nominal value. The normalized cycle power
can be formulated in analogy to Eq. (7.51). Substituting Ec by Eq. (7.64) and tc by
Eq. (7.63) gives

pc =

 1
µ2

F
(cosβo − fn,F)

2

− γi

γo

(√
1+E2

i

(
1− f 2

i

)
− fi

)2

1+E2
i

 fi [(µF −1)cosβo + fn,F]

µF fi − [(µF −1)cosβo + fn,F]
,

(7.65)

which can be maximized by optimizing the reeling factor fi,

pc,opt = max
fi


 1

µ2
F
(cosβo − fn,F)

2

− γi

γo
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1− f 2

i

)
− fi
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 fi [(µF −1)cosβo + fn,F]

µF fi − [(µF −1)cosβo + fn,F]

 .

(7.66)
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Because the tether force limit is maintained by modulating the reeling speed only,
the aerodynamic force factors γi and γo are assumed to be constant, as was the case
for unconstrained operation.

Wind speed regime 3: constrained tether force and generator power

With the tether force being constrained to the nominal value, the second hardware
limit encountered at increasing wind speeds is the maximum allowed generator
power, also denoted as rated or nominal generator power. Because the mechani-
cal power is the product of tether force and reeling speed, the reeling speed can not
be increased any further to compensate for higher wind speeds. Instead, the tether
force is now limited by depowering the kite, adjusting its aerodynamic properties or
other operational parameters. For example, Schelbergen et al. (2020) first increase
the elevation angle during reel-out with increasing wind speeds, and only when this
has reached a practical limit adjust also the aerodynamic properties. In the present
work, we follow Luchsinger (2013) and adjust only the aerodynamic properties of
the kite.

The nominal mechanical power of the generator can be evaluated as

Pn = Ft,nvn,P fn,P, (7.67)

with the nominal tether force given by

Ft,n =
1
2

ρv2
n,PSγo (cosβo − fn,P)

2 , (7.68)

where vn,P and fn,P represent the wind speed and reeling factor at which this specific
nominal power value occurs. The parameters Pn, vn,P, and fn,P are properties of the
specific system. The product vn,P fn,P is the nominal reeling speed which is kept
constant throughout this wind speed regime until reaching the cut-out wind speed at
which the operation is terminated. Enforcing a constant reeling speed for vw > vn,P
is expressed as

vw fo = vn,P fn,P, (7.69)

which leads to
fo =

fn,P

µP
, (7.70)

where we introduced the nondimensional velocity factor

µP =
vw

vn,P
> 1. (7.71)

Equation (7.70) describes how, starting from fn,P at vn,P, the reeling factor fo de-
creases with increasing wind speed vw in regime 3. To also keep the tether force
at the nominal value, the force factor γo needs to be reduced for vw > vn,P. From
Eq. (7.57) we derive the following relation
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γo =
Ft,n

qS (cosβo − fo)
2 , (7.72)

which replaces Eq. (7.47) in wind speed regime 3 to calculate the force factor during
reel-out.

The differentiation of wind speed regimes 2 and 3 is based on the assumption
that the nominal force Ft,n is reached at a lower wind speed than the nominal power
Pn, i.e. that vn,P > vn,F (Luchsinger 2013; Schmehl et al. 2013). The values of nom-
inal force and power depend on the specific design of the AWE system and are
commonly a result of systematic trade-offs during the sizing of components.

Using Eq. (7.70) to substitute the reeling factor fo in Eq. (7.50) leads to the
following expression for the cycle time

tc =
rmax − rmin

vw

µP fi − fn,P

fi fn,P
. (7.73)

The net mechanical energy per cycle can be defined similarly to Eqs. (7.45) and (7.46),
but now replacing the reel-out tether force Ft,o by the nominal tether force Ft,n, which
is then resolved by a combination of Eqs. (7.68) and (7.71),

Ec = [Ft,n −Ft,i] (rmax − rmin) , (7.74)

= qSγo

 1
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P
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2 (7.75)
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The factor 1/µ2
P is responsible for a rapid decrease in the generated energy contribu-

tion when the wind speeds exceed the nominal value. The normalized cycle power
can be formulated in analogy to Eq. (7.51). Substituting Ec by Eq. (7.76) and tc by
Eq. (7.73) gives

pc =
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i

 fi fn,P

µP fi − fn,P
,

(7.77)

which can be maximized by optimizing the reeling factor fi,
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pc,opt = max
fi
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 fi fn,P
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(7.78)

As mentioned above, the aerodynamic force factor γo is now modulated with the
wind speed according to Eq. (7.72), while γi stays constant as given in Eq. (7.48).

Three-regime strategy

To determine the maximum cycle power over the entire operational wind speed
range, three different wind speed regimes are distinguished:

1. Low wind speeds, vw,min ≤ vw < vn,F.
2. Medium wind speeds, vn,F ≤ vw < vn,P.
3. High wind speeds, vn,P ≤ vw < vw,max.

The threshold wind speeds vn,F and vn,P are determined by stepping through the
entire wind speed range starting from the cut-in wind speed vw,min and ending at the
cut-out wind speed vw,max. In the low wind speed regime, Eq. (7.56) is maximized
by optimizing the nondimensional reeling speeds fo and fi. For each wind speed, the
reel-out tether force Ft,o is computed from Eq. (7.57) and compared with the given
nominal value Ft,n of the specific AWE system. Once Ft,o reaches Ft,n, the system
properties vn,F and fn,F are set to the current values of vw and fo.

In the following medium wind speed regime, the reel-out tether force Ft,o is kept
at the nominal allowable value Ft,n by increasing fo with the wind speed according
to Eqs. (7.60) and (7.61). The maximum normalized cycle power given by Eq. (7.66)
is determined by optimizing only fi. For each wind speed, the reel-out mechanical
power Po is computed from Eq. (7.62) and compared with the nominal value Pn of
the specific AWE system. Once Po reaches Pn, the system properties vn,P and fn,P
are set to the current values of vw and fo.

In the following high wind speed regime, the tether force Ft,o and mechanical
power Po are kept at their nominal allowable values Ft,n and Pn by jointly decreasing
fo with increasing wind speed according to Eqs. (7.70) and (7.71) and γo according
to Eq. (7.72). The maximum normalized cycle power given by Eq. (7.78) is deter-
mined by optimizing only fi.

The computed power curve of a representative AWE system is illustrated in
Fig. 7.7, additional operational parameters in Fig. 7.8. The corresponding model
input parameters are listed in Table 7.2. The performance of the system is evaluated
in three different wind speed regimes, as outlined above, not accounting for compo-
nent efficiencies or any other losses. The aerodynamic characteristics of the kite is
adopted from (Van der Vlugt et al. 2013).
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Fig. 7.7: Power curve in three wind speed regions: ① unconstrained operation, ②
constrained tether force, and ② constrained tether force and generator power.

Fig. 7.8: Operational parameters in three wind speed regions.

The power curve exhibits the following behavior. Up to a wind speed of around
30 m/s, the reel-out power Po closely tracks the optimal power Popt defined by
Eq. (7.55). Above this wind speed, Po increases slower and, upon reaching the nomi-
nal wind speed, vn,P levels out at the nominal value Pn. The magnitude of the reel-in
power Pi continuously increases with the wind speed, up to 41 m/s, when it sud-
denly drops again. The cycle power Pc reflects the combined effect of the two phase
contributions, reaching its maximum Pc,max = 34.4 kW at the nominal wind speed
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Table 7.2: Model input parameters.

Parameter Value

Atmospheric density, ρ (kg/m3) 1.225
Elevation angle reel-out phase, βo (◦) 25
Tether minimum reeling speed, vk,r,min (m/s) -8
Tether maximum reeling speed, vk,r,max (m/s) 8
Tether minimum deployed length, rmin (m) 200
Tether maximum deployed length, rmax (m) 375
Kite planform area, S (m) 16.7
Kite lift coefficient reel-out phase, CL,o 1
Kite drag coefficient reel-out phase, CD,k,o 0.14
Kite lift coefficient reel-in phase, CL,i 0.2
Kite drag coefficient reel-in phase, CD,k,i 0.07
Tether drag coefficient, CD,t 1.1
Tether diameter, dt (mm) 4
Nominal tether force, Ft,n (kN) 5
Nominal generator power, Pn, (kW) 20

vn,P = 34.8 m/s. Above this wind speed, Pc drops rapidly, which is largely an effect
of the constant reel-out power while the reel-in power increases.

Figure 7.8 indicates that up to a wind speed of around 15 m/s, the reeling factors
fo and fi are nearly constant. Above this value, the reel-in factor and the reel-in
elevation angle βi drop abruptly in magnitude. The reel-out factor, on the other hand,
stays roughly constant up to the nominal wind speed vn,F = 24.4 m/s. Above this
value, the reel-out factor increases to reach a maximum at vn,P and then decreases
again. This behavior of fo—constant in regime 1, increasing in regime 2, and again
decreasing in regime 3—illustrates the three-regime strategy discussed above. At
a wind speed of 41 m/s, where the magnitude of the reel-in power sharply drops,
also the magnitude of the reel-in factor and the reel-in elevation angles exhibit sharp
drops. A sensitivity analysis indicates that several of the operational parameters and
kite properties have a strong effect on the performance of the system. One example
is the minimum reeling speed vk,r,min, which, when lowered, significantly increases
the rated power Pc,max.

The proposed performance model differs from Luchsinger (2013) in several as-
pects. Firstly, the elevation angle during the reel-out and reel-in phases is imple-
mented consistently for all three wind speed regimes. A constant lift-to-drag ratio
of the kite is prescribed for the reel-in phase, rendering the reel-in elevation angle
dependent on the wind speed. In contrast to this, Luchsinger (2013) prescribed a
constant reel-in elevation angle, rendering the lift-to-drag ratio dependent on the
wind speed. While this is a reasonable approach for modeling fixed-wing kites,
which can operate at negative and positive angles of attack, it is not feasible for
soft-wing kites, which, for stability reasons, require a safe distance from negative
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angles of attack. The overall advantage of the proposed performance model and
optimization procedure is the low computational cost.

7.1.5 Additional power conversion losses

So far, we have only considered the conversion of wind energy into mechanical
net power. However, the conversion of mechanical into electrical net power via a
cyclic process involving energy production, temporary storage, and consumption
entails additional losses. These depend on the design and specification of the ground
station and the operating conditions. We adopt the approach of Fechner and Schmehl
(2013) to account for the conversion efficiencies of the alternating generator and
motor modes. Other losses caused by the charging and discharging of the integrated
battery/capacitor module, auxiliary drives and the thermal control are neglected in
the present ground station analysis, for the purposed of simplicity. Further details
about the ground station analysis are available in Corte Vargas et al. (2020).

Generator efficiency

According to Fechner and Schmehl (2013), assuming an identical, constant effi-
ciency for generator and motor modes overestimates the overall conversion effi-
ciency. Instead, they recommended modeling the component efficiencies as func-
tions of the rotational speed of the drum and the applied torque.

The efficiency of the electrical machine in generator mode is defined as the ratio
of electrical to mechanical power during the reel-out phase,

ηe,o =
Pe,o

Po
, (7.79)

where
Po = Ft,ovw fo. (7.80)

The electrical power can also be evaluated by subtracting the conversion losses from
the mechanical power,

Pe,o = Po −Le,o − τf,oωo, (7.81)

where Le,o represents the electrical losses associated with current flow and generator
resistance, and τf,oωo the friction losses caused by the rotation of the drum with the
angular velocity ωo against the friction torque τf,o. The reel-out speed of the tether
and the angular velocity of the drum are coupled by the kinematic relation

vw fo = rdωo, (7.82)

where rd is the drum radius. The electrical losses are calculated from
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Le,o = 3RgI2
o k, (7.83)

where Io denotes the electrical current, Rg the stage resistance, and k a constant
factor accounting for other not explicitly modeled machine losses. The formulation
of Eq. (7.83) implies k ≥ 1. The electrical current is computed as

Io = τgcg, (7.84)

where τg is the effective generator torque and cg the generator constant. Assuming a
quasi-steady rotation of the drum during the reel-out phase, the effective generator
torque can be defined as

τg = Ft,ord − τf,o. (7.85)

The friction torque τf,o in Eqs. (7.81) and (7.85) can be modeled as an assembly of
static and dynamic, velocity-dependent contributions

τf,o = τc + cv,frdωo, (7.86)

where τc is the static friction torque, and cv, f the dynamic friction coefficient.

Motor efficiency

The efficiency of the electrical machine in motor mode is derived along the same
lines, with the difference that electrical energy is now used to perform work against
the aerodynamic forces acting on the kite. For this reason, the electrical efficiency
in motor mode is defined as the ratio of mechanical to electrical power,

ηe,i =
Pi

Pe,i
, (7.87)

where
Pi = Ft,ivw fi. (7.88)

Similar to Eq. (7.81), the electrical power can be evaluated by subtracting the con-
version losses from the mechanical power,

Pe,i = Pi −Le,i − τf,iωi. (7.89)

During reel-in, Pi and Pe,i are both negative, with Pe,i < Pi. Both loss contributions,
Le,i and τf,iωi are positive. Similar to Eq. (7.82), the reel-in speed of the tether and
the angular velocity of the drum are coupled by the kinematic relation

vw fi = rdωi. (7.90)

Because fi is negative, also ωi is negative, and, because τf,iωi is positive, τf,i is
negative. Similar to Eq. (7.83), the electrical conversion losses are evaluated as a
function of the passing current and phase resistance,
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Le,i = 3RmI2
i k, (7.91)

where the electrical current Ii is evaluated as the product of the motor constant cm
and the effective motor torque τm required to drive the drum. As for the derivation of
Eq. (7.85), we assume a quasi-steady rotation of the drum during the reel-in phase,
defining the effective motor torque as

τm = Ft,ird − τf,i. (7.92)

With τm and Ft,ird both positive and τf,i negative, we can see that τm > Ft,ird because
the motor torque needs to overcome the additional friction torque τf,i during reel-in.

7.1.6 Electrical power output

The electrical net power production for a certain wind speed and atmospheric den-
sity is calculated by applying the efficiencies derived in Sect. 7.1.5 to the energy
conversions during the reel-in and reel-out phases. To determine the energy pro-
duced over an entire day the probability at which the different wind speeds occur
during this day need to be factored in. This is the step in the analysis where the wind
resource assessment is combined with the performance model.

Electrical cycle power

Similar to the net mechanical energy per pumping cycle presented in Eq. (7.45), we
can define the net electrical energy per cycle as

Ee,c = Ee,o +Ee,i. (7.93)

To determine the electrical cycle power we introduce the conversion efficiencies
defined in Eqs. (7.79) and (7.87),

Pe,c =
Ee,o +Ee,i

to + ti
, (7.94)

=
1

ti + to

(
toηe,oPo + ti

1
ηe,i

Pi

)
. (7.95)

It is important to note that, in the present study, the additional power conversion
losses are taken into account only after determining the optimal mechanical cycle
power Pc,opt, as described in Sect. 7.1.4. This means the optimal point of operation
maximizing the electrical cycle power can deviate from the purely mechanically
determined optimum. In the frame of the presented feasibility analysis we assume
that this deviation is not significant. For a more refined analysis, this should however
be taken into account.
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Daily energy production

The probability distribution of the wind speeds over a day can generally be described
by a Weibull distribution function, which we use in a discretized form. Following the
three-regime strategy presented in Sect. 7.1.4, the average electrical power per day is
evaluated by integrating the product of electrical cycle power and the corresponding
wind speed probability over the three consecutive wind speed ranges

Pe,d =
∫ vn,F

vw,min

Pe,c(v)gw(v)dv

+
∫ vn,P

vn,F

Pe,c(v)gw(v)dv+
∫ vw,max

vn,P

Pe,c(v)gw(v)dv.
(7.96)

The lower bound of the first integral, vw,min, is the cut-in wind speed at which the
harvesting operation starts, while the upper bound of the last integral, vw,max, is the
cut-out wind speed at which the harvesting operation is discontinued.

With the average electrical power per day, Pe,d, and the time duration of the day,
td the daily energy production of the AWE system is given by

Ee,d = tdPe,d. (7.97)
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