Flight Control of the High Altitude Wind Power System

A.R. Podgaets, W.J. Ockels
Delft University of Technology, Faculty of Aerospace Engineering,
Chair of Aerospace for Sustainable Engineering and Technology,
Kluyverweg 1, Delft 2629HS Netherlands. www.lr.tudelft.nl/asset

Abstract—Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a fusion of two approaches: design of experiments and stochastic optimization. Such combination ensures finding global optimum for any reasonable number of parameters and objectives in a reasonable time while also collecting some information about sensitivities – these two features are much harder to achieve by other means. Robustness has been formulated as an additional objective. We found the system very steady despite big variations of wind velocity. The resulting optimal trajectories can be also used as a first iteration for open loop control algorithms.

INTRODUCTION

Tropical islands have big number of windy days which may mean that strong wind energy sector can become a good asset for them. A lot of research has been done worldwide on using high altitude winds for clean energy production (e.g., [17, 43, 44]). The concept for sustainable energy production called Laddermill [35] (see fig. 1) is known for 11 years now [36] and refers to the system of kites on one rope that drives the generator as kites pull it. The benefits of this approach to energy production is a low weight, low cost and simplicity of the structure, installation and maintenance [37, 27]. Theoretical investigation promises capabilities of a vast power output [28]. The concept has been successfully tested on a small scale with a single kite and several authors contributed to simulation of the kite systems (e.g., [31, 52]) but a robust controller has not been yet published for this application.

A few methods for addressing stability of kites and parachutes are presented in [54, 45, 33]. However, being primarily design choice tools, they are not suited for robust control. Possible kite control actuators are shown in [7, 8, 29]. Among recent optimization studies about kites is a design optimization paper [24], model-predictive control studies [22], [6] and [53] are in different stages of preparation for publishing. Receding horizon and Lyapunov’s parameters methods are used in all of them while control functions and optimization features are different: [6] and [53] formulate fast control for equations of motion while [22] employs Lagrange equations and full scale control, evolutionary optimization is used in [53] while [6] and [22] use multiple shooting. Control functions in [6, 53] are yaw, lift aerodynamic coefficient and cable length, and in [22] – roll, attack angle and cable length.

Laddermill

Laddermill is designed to become an alternative to windmills. It looks like a ladder of kites and generates electricity from wind as a windmill. When kites pull the rope the winch rotates and dynamo generates energy. Laddermill is a collective name for several designs; a rotating ring [38, 32] is historically the first. A ‘yo-yo’-like system is described in [47] and pumping Laddermill is pictured below.

Fig. 1. Artistic drawing of a Laddermill
100 MW or a bit more would be a technological limit of designs based on conventional Dyneema cables [28]. Next to it is a relatively low cost of installation and even mobility – there is no pole to dig into the ground and no blades to transport. Finally, Laddermill has a choice of altitudes: if there is not much wind on 400 m, let’s go to 300 or 500!

Laddermill’s ground station includes all basic parts of a windmill chamber: climatic camera, motor-generator, battery, brakes, etc. The main cable we are using now is made of Dyneema SK-60 fibers, and potentially it can be made of even stronger fibers or even nanoropes of space lift projects. The kites we use now are conventional surfkites because of their long design and exploitation record. However specially designed gliders [5], inflatable [4], twinskin [9] or lightweight [3] kites, parawings [55] and parachutes [12] can produce even better results.

Pumping Laddermill operates as follows. At first the first kite is launched into the air. Ground station unreels the rope while the first kite pulls the rest of the kites until they are all in the air. When the kites are considered launched, the ground station switches into dynamo mode and starts generating electricity and charging the battery. The length of the cable when this happens is called starting length. During generating energy the kites are flying in figures “eight”. Their roll angle is following a harmonic function and yaw angle changes with

\[
\Delta \varphi = \frac{1}{2} \frac{pSc_L}{\rho} v^2 \, \nu, \quad (4)
\]

\[
T_j = \Delta \varphi EAl_j / \{ \nu_0 \nu_j \}, \quad (5)
\]

here \( j \) is the number of the kite (from 1 to \( N \)), \( \mathbf{r} = (r_1, r_2, r_3) \) and \( \nu = (v_1, v_2, v_3) \) are the position and velocity of the kite relative to the airflow,

wind is wind velocity,

\( m, S, c_d \) and \( c_L \) are kite’s mass, projected area and aerodynamic coefficients,

\( \mathbf{d} = (d_1, d_2, d_3) \) is a unit vector pointing from the left wing of the kite to the right one;

\( \mathbf{D}, \mathbf{L} \) and \( \mathbf{T} \) are the forces of drag, lift and tension respectively.

Flight control problem

The equations of motion (1) – (5) can be rewritten as

\[
\dot{x}(t, u, x) = f(t, u, x), \quad (6)
\]

here \( x \) is the vector of coordinates and velocities of all kite with \( n = 6N \) components

\[
x = (\eta_1, \eta_2, ..., \eta_6, \nu_1, \nu_2, ..., \nu_6), \quad x(t) \in D \subset \mathbb{R}^n
\]

\[
\dot{x}(t) \in D \subset \mathbb{R}^n
\]

and \( u \) is the vector of controls

\[
u(t) = (v_1(t), \phi(t), \rho(t), \psi(t)), \quad (8)
\]

\[
u(t) \in U \subset \mathbb{R}^3
\]

Roll \( \varphi \), pitch \( \rho \) and yaw \( \psi \) affect components of vector \( \mathbf{d} (4) \) in Earth-fixed reference frame [11] and \( v_1 \) is a cable speed. The set of possible coordinates and velocities \( D \) dictates that all kites should be above the ground at all times and the set of possible controls \( U \) defines possible attitude angles with which kites can fly (from \(-\pi/2 \) to \( \pi/2 \)). Cable speed is limited by 1 m/s from below and 10 m/s from above. There are also constraints on how fast control can be executed:

\[
o_0 < \dot{\nu}(t) < o_1
\]

with the practical limit for each angular \( o \) evaluated as \( 6\pi/S \). Thus, a 6 m² kite can execute a complete turn in 2 seconds and 20 m² requires almost 7 seconds to turn.

Simulations during which the kites crash or spend more energy than produce are immediately interrupted. Unless this happens horizon of this optimal control problem is \( t_t=300 \) s:

\[
t_0 \leq t \leq t_t(u(t)) \quad (11)
\]
It is a time sufficient for several cycles of energy production even for the slowest cycle.

The main objective of this research is energy production

\[ \Phi = (\Phi_1, \Phi_2, \Phi_3) \in \Omega \subset \mathbb{R}^3, \]

\[ \Phi_1 = \int_{t_0}^{t_1} T_0(t) \cdot V_0(t) dt \rightarrow \max, \] \hspace{1cm} (12)

however there are other considerations the relevance of which needs investigation. One of them is the radius of the area which Laddermill occupies:

\[ \Phi_2 = \max_{t \in [t_0, t_1]} \sqrt{r_1^2 + r_2^2} \rightarrow \min. \] \hspace{1cm} (13)

Finally, the last objective assesses the robustness of flight trajectory and will be constructed below. The problem with objectives (12), (13), (15) controlling functions (8) and constraints (7), (9), (10) and (16) is the optimal control problem with three objectives, fixed start, open end (11) and constraints. The resulting problem is a robust optimal control problem with fixed start, open end, three objectives, four controls and constraints.

**Introduction of uncertain wind**

The possibility of achieving high energy production levels depends not only on overall performance of Laddermill and it’s optimal control but also on following the optimal trajectory. That is why addressing stability is an essential part of Laddermill’s mathematical description. One of the factors that affects Laddermill’s performance is the wind. For example there could be a wind gust that will dramatically decrease Laddermill performance in a given moment. Thus the robust control methods should be used. The fastest way to do so is calculating Lyapunov parameters [30] however we argue the possibility to fully understand the role of uncertain wind by investigating only one trajectory and not looking in the resulting change of energy production. More thorough possibilities include fuzzy logic [25] and interval computation, adaptive control [13, 14] and Bayesian networks [21], approximate dynamic programming [57] and reinforcement learning [2], evolutionary algorithms [10, 16], swarm intelligence, random forests, neural networks [46], support vector machines, multivariate adaptive regression splines [26], dominance-based filters [56] and others [23]. Yet another approach we use here originates directly from Lyapunov’s definition of stability [19, 20] and does not employ any additional mathematics.

Lyapunov’s definition is first transformed into the definition of stochastic stability

\[ \delta_w \bigg| P \left( \left| w - w^* \right| < \delta \right) \geq P^{**} \Rightarrow P \left( \left| E - E^* \right| < \epsilon \right) \geq P^*, \] \hspace{1cm} (14)

which is then turned into a pair of constraints [18]:

\[ \Phi_3 = \epsilon \rightarrow \min, \]

\[ u(t) \]

\[ \begin{aligned}
& P \left( \left| w - w^* \right| < \delta \right) \geq P^{**} \\
& P \left( \left| E - E^* \right| < \epsilon \right) \geq P^*.
\end{aligned} \] \hspace{1cm} (16)

Equation (15) reads: let us find such trajectory that minimizes trust interval of energy deviation \( \epsilon \) for a given interval of wind deviation \( \delta \) with given trust levels \( P^* = P^{**} = 0.99 \).

**Multi-objective approach**

There are several approaches for numerical solution of multi-objective optimal control problems – the principle of maximum [41], controls decomposition [15] and all the types of methods listed in the previous section. However, [34] have shown that continuous optimization problems cannot avoid a curse of dimensionality. Although it can be smoothed by introducing random jumps into the algorithm [1], only design of experiment type of approaches that map the feasible parameter space can completely solve this problem. Exact version of this approach used in this research is called parameter state investigation [42]. It has been primarily developed for design choice [49] but can be also efficiently employed in flight control [40].

Parameter state investigation method is finding feasible points by mapping the region of possible solutions in a certain fashion and then indexing results for visualization. LP, sequence [48] has been used in this research because it guarantees that for every given step in every hypercube there will be one and only one test point [51].

After finding feasible solutions and consequent refining the parameters of original optimization problem the method obtains Pareto set, the collection of all nondominated points in objective space. A nondominated point corresponds to an efficient solution in decision space. An efficient solution is a feasible solution for which an improvement in one objective will always lead to a deterioration in at least one of the other objectives. The nondominated set conveys trade-off information to a decision maker who makes the final decision.

**RESULTS**

The following values of parameters have been used:

**Laddermill:**

- Number of kites – 5,
- Kites type – inflatable surf kite,
- Aspect ratio – 3,
- Zero lift angle – –6 degrees,
- Mass of each kite – 5 kg,
- Area of each kite – 20 m²,
- Distance between kites – 5 m,
- Starting cable length – 75 m,
Podgaets A.R., Ockels W.J. Flight control of the high altitude wind power system. Proceedings of the 7th Conference on Sustainable Applications for Tropical Island States (Cape Canaveral, Florida, USA, June 3-6 2007)

Total cable length – 125 m,
Cable stiffness – 112 kN,
Cable breaking strength – 40 kN.

Wind conditions:
- Wind speed – 15 m/s (Bft 7, 30 kt),
- Wind gust duration – 0.5 – 5 s (even distribution)
- Wind gust speed – 0 – 15 m/s (normal)
- Wind gust direction – 360 degrees (even)
- Only one wind gust is happening at a time.

Optimization:
- Horizon – 300 s,
- Time step – 0.001 s,
- Average number of trajectories in a sample – 9,
- Number of test points – 1024,
- Number of feasible solutions – 864,
- Number of solutions in Pareto set – 12.

Optimal solution:
- Reel out speed – 6.96 m/s,
- Reel in speed – –8.58 m/s,
- Period of one figure “eight” – 3.58 s,
- Magnitude of figure “eight” – 22.5 degrees.
- The amount of electric energy produced for the optimal solution is roughly 0.5 kWh per minute of operation (fig. 2).

Figures 3 and 4 show aerodynamic coefficients of the kite found from CFD analysis of airflow around its airfoil.

Trajectory of the whole Laddermill system during the first minute of operation can be found on fig. 5. It covers launch and the first cycle of operation: reeling up and down. The graph ends in the beginning of reeling up for the second time. When the first kite is launched the rest get dragged into the air automatically after reaching their rope length. They make a characteristic rapid arc ascent that always happens when you put tension on kite’s lines, then move back as a pendulum in order to find their equilibrium and then start their controlled ascent. After reaching the starting cable length the kites start flying in figures “eight” (this and previous trajectory are drawn without wind gusts for better view) – see fig. 6. When the total length of the cable is reached the kites are depowered and start descent.

Roll control that causes this movement is shown on fig. 7 which shows one cycle of “figure-eighting”. The graph starts right before the finish of the launch and ends in the beginning of descent.

Kite’s angle of attack is shown on fig. 8. As there are lines for five kites at once, the picture during the launch is a bit dirty. High angles in the first three seconds are produced.

![Fig 2. Energy production over time, kW h](image2)

![Fig 3. Lift over attack angle for surfkite's airfoil](image3)

![Fig 4. Lift-drag polar for surfkite's airfoil](image4)

![Fig 5. One cycle of reeling out and in](image5)
by the kites that are tumbling on the ground. Then there is a
smooth moment when the tension is applied – here you see
how short this large arc movement is. During the first ascent
the kites are moving rather chaotic, then you see the influence
of “figure-eighting” and – finally – descent when angle of
attack is set to zero lift angle.

Corresponding cable tension is shown on fig. 9.

DISCUSSION

• Uncertain wind conditions proved to be not a threat for a
  fully controllable kite: all the crashes happened solely due
to a poor control, energy production mostly benefited
from random gusts of wind.
• Another observation is that bigger energy production
means less stability in the electric power.
• The faster are the movements of the kite the bigger is the
  influence of wind gusts on the change in energy
production.
• The best kite trajectory has a short period and as fast kites
  movement as possible.
• Small magnitudes of the figure “eight” produce more
  vertical ascent.
• Control of the kite is based on kite’s search of equilibrium
  so it is a bit delayed. Turn in advance.
• Required thickness of the cable can be dramatically
  reduced by doing something clever in the first five
  seconds of the flight – may be variable cable speed can
  smooth them.
• The amount of power produced is practically the same as
  for a windmill with the same swept area. The diameter of
  blades of such windmill would be around 11 meters.

CONCLUSIONS

A concept called Laddermill has been simulated in this
paper. Five surfkites in Bft 7 wind are generating 2 kilowatt-
hours every four minutes which is the same as power output of
windmill of the same swept area. However, Laddermill has
also a choice of altitudes and much lower cost of construction
which makes it a more flexible and mobile solution.
References

33. Melkert J.A. STRATOW first model calculation and tests. MSc thesis. Delf University of Technology, 1992
38. www.ockels.nl (Wubbo Ockels. Information page on Laddermill)
44. Rundel C.V. Tethered Rotary Kite. US Patent 5149020, 1992
45. Sanchez G. Dynamics and control of single-line kites. The Aeronautical Journal, 2006, No. 9, pp. 615-621
47. www.sequioaonline.com (Sequioa. Home page of the kite wind generator company)
55. Zyryanov D.A. Stress-strain state investigation of a kite for wind electric station. Project report, PSTU, 2006